
Package: correspondenceTables (via
r-universe)
November 1, 2024

Type Package

Title Creating Correspondence Tables Between Two Statistical
Classifications

Date 2023-04-27

Version 0.8.2

Description A candidate correspondence table between two
classifications can be created when there are correspondence
tables leading from the first classification to the second one
via intermediate 'pivot' classifications. The correspondence
table between two statistical classifications can be updated
when one of the classifications gets updated to a new version.

License EUPL

Encoding UTF-8

Imports data.table, httr, tidyverse, writexl

Suggests knitr, rmarkdown, tinytest

VignetteBuilder knitr

NeedsCompilation no

URL https://github.com/eurostat/correspondenceTables

BugReports https://github.com/eurostat/correspondenceTables/issues

Maintainer Mátyás Mészáros <matyas.meszaros@ec.europa.eu>

RoxygenNote 7.2.3

Repository https://eurostat.r-universe.dev

RemoteUrl https://github.com/eurostat/correspondencetables

RemoteRef HEAD

RemoteSha 6ad9bd17b7568918e84429d8aca2fbe4db9a5ad2

1

https://github.com/eurostat/correspondenceTables
https://github.com/eurostat/correspondenceTables/issues

2 classEndpoint

Contents
classEndpoint . 2
classificationEndpoint . 3
classificationQC . 4
correctionClassification . 7
correspondenceList . 8
dataStructure . 8
lengthsFile . 10
newCorrespondenceTable . 11
prefixList . 15
retrieveClassificationTable . 16
retrieveCorrespondenceTable . 17
structureData . 18
updateCorrespondenceTable . 19

Index 25

classEndpoint Retrieve a list of classification tables in CELLAR, FAO or both.

Description

Retrieve a list of classification tables in CELLAR, FAO or both.

Usage

classEndpoint(endpoint)

Arguments

endpoint A string of type character containing the endpoint where the table is stored. The
valid values are "CELLAR", "FAO" and "ALL" for both endpoints.

Value

classEndpoint() returns a table with information needed to retrieve the classification table:

• Prefix name: the SPARQL instruction for a declaration of a namespace prefix
• Conceptscheme: taxonomy of the SKOS object to be retrieved
• URI: the URL from which the SPARQL query was retrieved
• Name: the name of the table retrieved

Examples

{
endpoint = "ALL"
list_data = classEndpoint(endpoint)
}

classificationEndpoint 3

classificationEndpoint

Retrieve a list of classification tables from CELLAR and FAO reposi-
tories or both.

Description

The purpose of this function is to provide a comprehensive summary of the data structure for each
classification in CELLAR and FAO endpoint. The summary includes information such as the prefix
name, URI, key, concept scheme, and title associated with each classification.

Usage

classificationEndpoint(endpoint = "ALL")

Arguments

endpoint SPARQL endpoints provide a standardized way to access data sets, making it
easier to retrieve specific information or perform complex queries on linked data.
This is an optional parameter, which by default is set to "ALL". The valid values
are "CELLAR", "FAO" and "ALL" for both endpoints.

Value

classificationEndpoint() returns a table with information needed to retrieve the classification
table:

• Prefix name: the SPARQL instruction for a declaration of a namespace prefix

• Conceptscheme: taxonomy of the SKOS object to be retrieved

• URI: the URL from which the SPARQL query was retrieved

• Name: the name of the table retrieved

Examples

{
endpoint = "ALL"
list_data = classificationEndpoint(endpoint)
}

4 classificationQC

classificationQC ClassificationQC performs a quality check control checks on a given
statistical classifications

Description

The purpose of this function perform quality control checks on statistical classifications. It checks
the compliance of classifications with structural rules and provides informative error messages for
violations. The function requires input files containing code and label information for each classifi-
cation position. It verifies the formatting requirements, uniqueness of codes, fullness of hierarchy,
uniqueness of labels, hierarchical label dependencies, single child code compliance, and sequencing
of codes. The function generates a QC output data frame with the classification data, hierarchical
level, code segments, and test outcomes.Additionally, it allows exporting the output to a CSV file.
Overall, the classificationQC function ensures the integrity and accuracy of statistical classifica-
tions.

Usage

classificationQC(
classification,
lengthsFile,
fullHierarchy = TRUE,
labelUniqueness = TRUE,
labelHierarchy = TRUE,
singleChildCode = NULL,
sequencing = NULL,
XLSXout = FALSE

)

Arguments

classification Refers to a classification in csv file or an R dataframe structured with two
columns, consisting of codes and labels, respectively. If the classification is
provided as a csv file, it should be stored in the working directory (as defined
using getwd). This is a mandatory argument.

fullHierarchy It is used to test the fullness of hierarchy. If the parameter fullHierarchy is
set to FALSE, the function will check that every position at a lower level than 1
should have parents all the way up to level 1. If it is set to TRUE, in addition to
the previous, it will be checked that any position at a higher level than k should
have children all the way down to level k.

labelUniqueness

It is used to test the that positions at the same hierarchical level have unique
labels. If set to TRUE, the compliance is checked and positions with duplicate
labels are marked as 1 in the "duplicateLabel" column, while positions with
unique labels are marked as 0.

classificationQC 5

labelHierarchy It is used to ensure that hierarchical structure of labels is respected. When set to
TRUE, the function will check that single child have a label identical to the label
of its parent and that has if a position has a label identical to the label of one of
its children, then that position should only have a single child.

singleChildCode

It refers to CSV file with specific formatting to define valid codes for each level.
If this parameter is not NULL then it checks compliance with coding rules for
single children and non-single children, as provided in the CSV file.

sequencing It refers to a CSV file to define the admissible codes for multiple children at
each level. If this parameter is not NULL, the function checks the sequencing of
multiple children codes within each level, as provided in the CSV file.

XLSXout The valid values are FALSE or TRUE. In both cases the output will be returned as
an R list. If output should be saved as a xlsx file, the argument should be set as
TRUE. By default, no xlsx file is produced.

lengthsfile Refers to a CSV file or a R dataframe (one record per hierarchical level) contain-
ing the initial and last position of the segment of the code specific to that level.
The number of lines of this CSV file or the R dataframe will also implicitly de-
fine the number of hierarchical levels of the classification. This is a mandatory
argument.

Value

classificationQC() returns a list of dataframes identifying possible the cases violating the for-
matting requirements. The databases returned depend on the rules checked. The databases produced
are:

• QC_output The dataset includes all the original records in the classification. Colum "Level"
refers to the hierarchical levels of each position. Each code will be parsed into segment_k
(column "Segmentk") and code_k (column "Codek"), corresponding to the code and segment
and hierarchical level k respectively. Additional columns are included to flag the corrected
behaviour in each position. These are

– Orphan: if fullHierarchy is set to FALSE, an "orphan" is a position at a hierarchical level
(j) greater than 1 that lacks a parent at the hierarchical level (j-1) immediately above it.
Orphan positions are marked with a value of 1 in the "QC output" column, indicating
their orphan status. Otherwise, they are assigned a value of 0.

– Childless: if fullHierarchy is set to TRUE, a "childless" position is one at a hierarchical
level (j) less than k that lacks a child at the hierarchical level (j+1) immediately below
it. Childless positions are marked with a value of 1 indicating their childless status.
Otherwise, they are assigned a value of 0.

– DuplicateLabel: new column in the output that flags positions involved in duplicate label
situations (where multiple positions share the same label at the same hierarchical level)
by assigning them a value of 1, while positions with unique labels are assigned a value of
0.

– SingleChildMismatch: column in the output provides information about label hierarchy
consistency in a hierarchical classification system. It indicates:c Value 1: Mismatched
labels between a parent and its single child. Value 9: Parent-child pairs with matching
labels, but the parent has multiple children.

6 classificationQC

– SingleCodeError: column serves as a flag indicating whether a position is a single child
and whether the corresponding "singleCode" contains the level j segment. A value of 1
signifies a mismatch, while a value of 0 indicates compliance with the coding rules

– MultipleCodeError: column serves as a flag indicating whether a position is not a single
child and whether the corresponding "multipleCodej" contains the level j segment. A
value of 1 signifies a mismatch, while a value of 0 indicates compliance with the coding
rules

– GapBefore: takes the value 0 or 1 if there is a missing child in the 123456789 series.
– LastSibling: takes the value 1 when it is the last child in the series 123456789 otherwise

the value 0

• QC_noLevels A subset of the QC_output dataframe including only records for which levels is
not defined. In general if this dataframe is not empty, it suggest that either the classification or
the length file is not correctily specified.

• QC_orphan A subset of the QC_output dataframe including only records that have no parents
at the higher hierarchical level.

• QC_childless A subset of the QC_output dataframe including only records that have no chil-
dren at the lower hierarchical level.

• QC_duplicatesLabel A subset of the QC_output dataframe including only records that have
duplicated label in the same hierarchical level.

• QC_duplicatesCode A subset of the QC_output dataframe including only records that have
the same codes.

• QC_singleChildMismatch A subset of the QC_output dataframe including only records that
are single child and have different labels from their parents or that are multiple children and
have same labels to their parents.

• QC_singleCodeError A subset of the QC_output dataframe including only records that are
single children and have been wrongly coded (not following the rule provided in the ’Sin-
gleChildMismatch’ CSV file).

• QC_multipleCodeError A subset of the QC_output dataframe including only records that are
multiple children and have been wrongly coded (not following the rule provided in the ’Sin-
gleChildMismatch’ CSV file).

• QC_gapBefore A subset of the QC_output dataframe including only records that are multiple
children and have gap before in the sequencing provided in the ’sequencing’ CSV file.

• QC_lastSibling A subset of the QC_output dataframe including only records that are multiple
and last children following the sequencing provided in the ’sequencing’ CSV file.

Examples

{
prefix = "nace2"
conceptScheme = "nace2"
endpoint = "CELLAR"
lengthsTable = lengthsFile(endpoint, prefix, conceptScheme, correction = TRUE)
classification = retrieveClassificationTable(prefix, endpoint, conceptScheme, level="ALL")$ClassificationTable
classification = classification[,c(1,2)]
classification = correctionClassification(classification)
Output = classificationQC(classification, lengthsFile, fullHierarchy = TRUE, labelUniqueness = TRUE, labelHierarchy = TRUE, singleChildCode = NULL, sequencing = NULL)

correctionClassification 7

View(Output$QC_output)
View(Output$QC_noLevels)
View(Output$QC_orphan)
View(Output$QC_childless)
View(Output$QC_duplicatesLabel)
View(Output$QC_duplicatesCode)
View(Output$QC_singleChildMismatch)
View(Output$QC_singleCodeError)
View(Output$QC_multipleCodeError)
View(Output$QC_gapBefore)
View(Output$QC_lastSibling)
}

correctionClassification

Retrieve classification table from CELLAR and FAO repositories.

Description

The aim of this function is to provide a table showing the different codes and labels for each classi-
fication

Usage

correctionClassification(classification)

Arguments

classification it returns a dataframe with two columns corrected according to the classification
of CELLAR & FAO.

Value

correctionClassification() returns a table with information needed to retrieve the classifica-
tion table:

• Classification Code name (e.g. nace2): the code of each object

• Classification Label: corresponding name of each object

Examples

{
prefix = "nace2"
conceptScheme = "nace2"
endpoint = "CELLAR"
classification = retrieveClassificationTable(prefix, endpoint, conceptScheme, level="ALL")$ClassificationTable
correct_classification = correctionClassification(classification)
View(correct_classification)
}

8 dataStructure

correspondenceList provides an overview of all the available correspondence classification
from CELLAR and FAO repository.

Description

provides an overview of all the available correspondence classification from CELLAR and FAO
repository.

Usage

correspondenceList(endpoint)

Arguments

endpoint The SPARQL Endpoint. The valid values are "CELLAR", "FAO" or "ALL" for
both.

Value

correspondenceList() returns a list of the correspondence tables available with prefix name, ID,
Source classification, Target classification, Table name and URI.

Examples

{
corr_list = correspondenceList("ALL")

}

dataStructure Retrieve information about the structure of each classification tables
from CELLAR and FAO repositories.

Description

Retrieve information, for all the classification available in the repositories (CELLAR and FAO),
about the level names their hierarchy and the numbers of records the function "structureData()" can
be used.

Usage

dataStructure(prefix, conceptScheme, endpoint, language = "en")

dataStructure 9

Arguments

prefix Prefixes are typically defined at the beginning of a SPARQL query and are used
throughout the query to make it more concise and easier to read. Multiple pre-
fixes can be defined in a single query to cover different namespaces used in the
data set. The function ’classificationEndpoint()’ can be used to generate the
prefixes for the selected classification table.

conceptScheme Refers to a unique identifier associated to specific classification table. The con-
ceptScheme can be obtained by utilizing the "classificationEndpoint()" function.

endpoint SPARQL endpoints provide a standardized way to access data sets, making it
easier to retrieve specific information or perform complex queries on linked data.
The valid values are "CELLAR" or "FAO".

language Refers to the specific language used for providing label, include and exclude
information in the selected classification table. By default is set to "en". This is
an optional argument.

Value

structureData() returns the structure of a classification table from CELLAR and FAO in form a
table with the following colums:

• Concept_Scheme: taxonomy of the SKOS object to be retrieved
• Level: the levels of the objects in the collection
• Depth: identify the hierarchy of each level
• Count: the number of objects retrieved in each level

Examples

{
Obtain a list including the structure of each classification available
CELLAR
data_CELLAR = list()
endpoint = "CELLAR"
list_data = classificationEndpoint("ALL")

for (i in 1:nrow(list_data$CELLAR)){
prefix = list_data$CELLAR[i,1]
conceptScheme = list_data$CELLAR[i,2]
data_CELLAR[[i]] = dataStructure(prefix, conceptScheme, endpoint)

}
names(data_CELLAR) = list_data$CELLAR[,1]
FAO
data_FAO = list()
endpoint = "FAO"
for (i in 1:nrow(list_data$FAO)){

prefix = list_data$FAO[i,1]
conceptScheme = list_data$FAO[i,2]
data_FAO[[i]] = dataStructure(prefix, conceptScheme, endpoint)

}
names(data_FAO) = list_data$FAO[,1]
}

10 lengthsFile

lengthsFile Retrieve correspondance tables lenghts for each level tables between
classification from CELLAR and FAO repositories

Description

The aim of this function is to provide a table showing the different levels of hierarchy for each
classification and the length of each level.

Usage

lengthsFile(endpoint, prefix, conceptScheme, correction = TRUE)

Arguments

endpoint SPARQL endpoints provide a standardized way to access data sets, making it
easier to retrieve specific information or perform complex queries on linked data.
The valid values are "CELLAR" or "FAO".

prefix Prefixes are typically defined at the beginning of a SPARQL query and are used
throughout the query to make it more concise and easier to read. Multiple pre-
fixes can be defined in a single query to cover different namespaces used in the
dataset. The function ’classEndpoint()’ can be used to generate the prefixes for
the selected correspondence table.

conceptScheme Refers to a unique identifier associated to specific classification table. The con-
ceptScheme can be obtained by utilizing the "classEndpoint()" function.

correction The valid values are FALSE or TRUE. In both cases the lengths table as an R
object. If the output wants to have a correction for hierarchy levels TRUE. By
default is set to "TRUE".

Value

lenghtsFile() returns a table containing the lengths for each hierarchical level of the classifica-
tion.

• charb: contains the length for each code for each hierarchical level

• chare: contains the concatenated length of char b for each code for each hierarchical level

Examples

{
endpoint = "CELLAR"
prefix = "nace2"
conceptScheme = "nace2"

lengthsTable = lengthsFile(endpoint, prefix, conceptScheme, correction = TRUE)

#View lengthsTable

newCorrespondenceTable 11

View(lengthsTable)

}

newCorrespondenceTable

Ex novo creation of candidate correspondence tables between two
classifications via pivot tables

Description

Creation of a candidate correspondence table between two classifications, A and B, when there are
correspondence tables leading from the first classification to the second one via k intermediate pivot
classifications C1, . . . , Ck. The correspondence tables leading from A to B are A:C1, {Ci:Ci+1:
1 ≤ i ≤ k − 1}, B:Ck.

Usage

newCorrespondenceTable(
Tables,
CSVout = NULL,
Reference = "none",
MismatchTolerance = 0.2,
Redundancy_trim = TRUE

)

Arguments

Tables A string of type character containing the name of a csv file which contains the
names of the files that contain the classifications and the intermediate correspon-
dence tables (see "Details" below).

CSVout The preferred name for the output csv files that will contain the candidate cor-
respondence table and information about the classifications involved. The valid
values are NULL or strings of type character. If the selected value is NULL, the
default, no output file is produced. If the value is a string, then the output is ex-
ported into two csv files whose names contain the provided name (see "Value"
below).

Reference The reference classification among A and B. If a classification is the reference to
the other, and hence hierarchically superior to it, each code of the other classifi-
cation is expected to be mapped to at most one code of the reference classifica-
tion. The valid values are "none", "A", and "B". If the selected value is "A" or
"B", a "Review" flag column (indicating the records violating this expectation)
is included in the output (see "Explanation of the flags" below).

MismatchTolerance

The maximum acceptable proportion of rows in the candidate correspondence
table which contain no code for classification A or no code for classification B.
The default value is 0.2. The valid values are real numbers in the interval [0, 1].

12 newCorrespondenceTable

Redundancy_trim

An argument in the function containing the logical values TRUE or FALSE used
to facilitate the trimming of the redundant records. The default value is TRUE,
which removes all redundant records. The other values is FALSE, which shows
redundant records together with the redundancy flag.

Details

File and file name requirements:

• The file that corresponds to argument Tables and the files to which the contents of Tables
lead, must be in csv format with comma as delimiter. If full paths are not provided, then these
files must be available in the working directory. No two filenames provided must be identical.

• The file that corresponds to argument Tables must contain filenames, and nothing else, in a
(k+2) × (k+2) table, where k, a positive integer, is the number of "pivot" classifications. The
cells in the main diagonal of the table provide the filenames of the files which contain, with
this order, the classifications A, C1, . . ., Ck and B. The off-diagonal directly above the main
diagonal contains the filenames of the files that contain, with this order, the correspondence
tables A:C1, {Ci:Ci+1, 1 ≤ i ≤ k − 1} and B:Ck. All other cells of the table must be empty.

• If any of the two files where the output will be stored is read protected (for instance because it
is open elsewhere) an error message will be reported and execution will be halted.

Classification table requirements:

• Each of the files that contain classifications must contain at least one column and at least
two rows. The first column contains the codes of the respective classification. The first row
contains column headers. The header of the first column is the name of the respective classi-
fication (e.g., "CN 2021").

• The classification codes contained in a classification file (expected in its first column as men-
tioned above) must be unique. No two identical codes are allowed in the column.

• If any of the files that contain classifications has additional columns the first one of them is
assumed to contain the labels of the respective classification codes.

Correspondence table requirements:

• The files that contain correspondence tables must contain at least two columns and at least
two rows. The first column of the file that contains A:C1 contains the codes of classification
A. The second column contains the codes of classification C1. Similar requirements apply to
the files that contain Ci:Ci+1, 1 ≤ i ≤ k − 1 and B:Ck. The first row of each of the files that
contain correspondence tables contains column headers. The names of the first two columns
are the names of the respective classifications.

• The pairs of classification codes contained in a correspondence table file (expected in its first
two columns as mentioned above) must be unique. No two identical pairs of codes are allowed
in the first two columns.

Interdependency requirements:

• At least one code of classification A must appear in both the file of classification A and the
file of correspondence table A:C1.

newCorrespondenceTable 13

• At least one code of classification B must appear in both the file of classification B and the file
of correspondence table B:Ck, where k, k ≥ 1, is the number of pivot classifications.

• If there is only one pivot classification, C1, at least one code of it must appear in both the file
of correspondence table A:C1 and the file of correspondence table B:C1.

• If the pivot classifications are k with k ≥ 2 then at least one code of C1 must appear in both the
file of correspondence table A:C1 and the file of correspondence table C1:C2, at least one code
of each of the Ci, i = 2, . . . , k − 1 (if k ≥ 3) must appear in both the file of correspondence
table Ci−1:Ci and the file of correspondence table Ci:Ci+1, and at least one code of Ck must
appear in both the file of correspondence table Ck−1:Ck and the file of correspondence table
B:Ck.

Mismatch tolerance:

• The ratio that is compared with MismatchTolerance has as numerator the number of rows in
the candidate correspondence table which contain no code for classification A or no code for
classification B and as denominator the total number of rows of this table. If the ratio exceeds
MismatchTolerance the execution of the function is halted.

If any of the conditions required from the arguments is violated an error message is produced and
execution is stopped.

Value

newCorrespondenceTable() returns a list with two elements, both of which are data frames.

• The first element is the candidate correspondence table A:B, including the codes of all "pivot"
classifications, augmented with flags "Review" (if applicable), "Redundancy", "Unmatched",
"NoMatchFromA", "NoMatchFromB" and with all the additional columns of the classification
and intermediate correspondence table files.

• The second element contains the names of classification A, the "pivot" classifications and
classification B as read from the top left-hand side cell of the respective input files.

• If the value of argument CSVout a string of type character, the elements of the list are
exported into files of csv format. The name of the file for the first element is the value of argu-
ment CSVout and the name of the file for the second element is classificationNames_CSVout.
For example, if CSVout = "newCorrespondenceTable.csv", the elements of the list are exported
into "newCorrespondenceTable.csv" and "classificationNames_newCorrespondenceTable.csv"
respectively.

Explanation of the flags

• The "Review" flag is produced only if argument Reference has been set equal to "A" or "B".
For each row of the candidate correspondence table, if Reference = "A" the value of "Review"
is equal to 1 if the code of B maps to more than one code of A, and 0 otherwise. If Reference
= "B" the value of "Review" is equal to 1 if the code of A maps to more than one code of B,
and 0 otherwise. The value of the flag is empty if the row does not contain a code of A or a
code of B.

• For each row of the candidate correspondence table, the value of "Redundancy" is equal to 1
if the row contains a combination of codes of A and B that also appears in at least one other
row of the candidate correspondence table.

14 newCorrespondenceTable

• When "Redundancy_Trim" is equal to FALSE the "Redundancy_keep" flag is created to iden-
tify with value 1 the records that will be kept if trimming is performed.

• For each row of the candidate correspondence table, the value of "Unmatched" is equal to 1 if
the row contains a code of A but no code of B or if it contains a code of B but no code of A.
The value of the flag is 0 if the row contains codes for both A and B.

• For each row of the candidate correspondence table, the value of "NoMatchFromA" is equal
to 1 if the row contains a code of A that appears in the table of classification A but not in
correspondence table A:C1. The value of the flag is 0 if the row contains a code of A that
appears in both the table of classification A and correspondencetable A:C1. Finally, the value
of the flag is empty if the row contains no code of A or if it contains a code of A that appears
in correspondence table A:C1 but not in the table of classification A.

• For each row of the candidate correspondence table, the value of "NoMatchFromB" is equal
to 1 if the row contains a code of B that appears in the table of classification B but not in
correspondence table B:Ck. The value of the flag is 0 if the row contains a code of B that
appears in both the table of classification B and correspondence table B:Ck. Finally, the value
of the flag is empty if the row contains no code of B or if it contains a code of B that appears
in correspondence table B:Ck but not in the table of classification B.

• The argument "Redundancy_trim" is used to delete all the redundancies which are mapping
correctly. The valid logical values for this argument in the candidate correspondence table
are TRUE or FALSE. If the selected value is TRUE, all redundant records are removed and kept
exactly one record for each unique combination. For this retained record, the codes, the label
and the supplementary information of the pivot classifications are replaced with ’multiple’.
If the multiple infomration of the pivot classifications are the same, their value will not be
replaced. If the selected value is FALSE, no trimming is executed so redundant records are
shown, together with the redundancy flag. If the logical values are missing the implementation
of the function will stop.

Sample datasets included in the package

Running browseVignettes("correspondenceTables") in the console opens an html page in the
user’s default browser. Selecting HTML from the menu, users can read information about the use
of the sample datasets that are included in the package. If they wish to access the csv files with the
sample data, users have two options:

• Option 1: Unpack into any folder of their choice the tar.gz file into which the package has
arrived. All sample datasets may be found in the "inst/extdata" subfolder of this folder.

• Option 2: Go to the "extdata" subfolder of the folder in which the package has been installed
in their PC’s R library. All sample datasets may be found there.

Examples

{
Application of function newCorrespondenceTable() with "example.csv" being the file
that includes the names the files and the intermediate tables in a sparse square
matrix containing the 100 rows of the classifications (from ISIC v4 to CPA v2.1 through
CPC v2.1). The desired name for the csv file that will contain the candidate
correspondence table is "newCorrespondenceTable.csv", the reference classification is
ISIC v4 ("A") and the maximum acceptable proportion of unmatched codes between

prefixList 15

ISIC v4 and CPC v2.1 is 0.56 (this is the minimum mismatch tolerance for the first 100 row
as 55.5% of the code of ISIC v4 is unmatched).

tmp_dir<-tempdir()
A <- read.csv(system.file("extdata", "example.csv", package = "correspondenceTables"),

header = FALSE,
sep = ",")

for (i in 1:nrow(A)) {
for (j in 1:ncol(A)) {

if (A[i,j]!="") {
A[i, j] <- system.file("extdata", A[i, j], package = "correspondenceTables")

}}}
write.table(x = A,

file = file.path(tmp_dir,"example.csv"),
row.names = FALSE,
col.names = FALSE,
sep = ",")

NCT<-newCorrespondenceTable(file.path(tmp_dir,"example.csv"),
file.path(tmp_dir,"newCorrespondenceTable.csv"),
"A",
0.56,
FALSE)

summary(NCT)
head(NCT$newCorrespondenceTable)
NCT$classificationNames
csv_files<-list.files(tmp_dir, pattern = ".csv")
unlink(csv_files)
}

prefixList Create a list of prefixes for both CELLAR and FAO

Description

Create a list of prefixes to be used when defying the SPARQL query to retrieve the tables

Usage

prefixList(endpoint)

Arguments

endpoint A string of type character containing the endpoint where the table is stored. The
valid values are "CELLAR" and "FAO".

Value

prefixList() returns a list of prefixes to be used when defying the SPARQL query.

16 retrieveClassificationTable

Examples

{
endpoint = "CELLAR"
prefix_list = prefixList(endpoint)
}

retrieveClassificationTable

Retrieve a classification tables from CELLAR and FAO

Description

Retrieve a classification tables from CELLAR and FAO

Usage

retrieveClassificationTable(
prefix,
endpoint,
conceptScheme,
level = "ALL",
language = "en",
CSVout = FALSE

)

Arguments

prefix The SPARQL instruction for a declaration of a namespace prefix. It can be found
using the classEndpoint() function.

endpoint The SPARQL Endpoint, the valid values are "CELLAR" or "FAO".

conceptScheme Taxonomy of the SKOS object to be retrieved. It can be found using the classEnd-
point() function.

level The levels of the objects in the collection to be retrieved, it can be found using
the structureData() function. By default is set to "ALL". This is an optional
argument.

language Language of the table. By default is set to "en". This is an optional argument.

CSVout The valid values are FALSE or TRUE. In both cases the correspondence table as
an R object. If output should be saved as a csv file, the argument should be set
as TRUE. By default, no csv file is produced.

Value

retrieveClassificationTable() returns a classification tables from CELLAR and FAO. The
table includes the following variables:

• Classification name (e.g. nace2): the code of each object

retrieveCorrespondenceTable 17

• NAME: the corresponding name of each object

• Include: details on each object

• Include_Also: details on each object

• Exclude: details on each object

• URL: the URL from which the SPARQL query was retrieved

Examples

{
prefix = "nace2"
endpoint = "CELLAR"
conceptScheme = "nace2"
dt = retrieveClassificationTable(prefix, endpoint, conceptScheme)
By default retrieved all levels and only English
head(dt)
}

retrieveCorrespondenceTable

Retrieve a correspondence tables from CELLAR and FAO.

Description

Retrieve a correspondence tables from CELLAR and FAO.

Usage

retrieveCorrespondenceTable(
prefix,
endpoint,
ID_table,
language = "en",
CSVout = FALSE

)

Arguments

prefix The SPARQL instruction for a declaration of a namespace prefix. It can be found
using the classEndpoint() function.

endpoint The SPARQL Endpoint, the valid values are "CELLAR" or "FAO".

ID_table The ID of the correspondence table which can be found using the correspon-
denceList() function.

language Language of the table. By default is set to "en". This is an optional argument.

CSVout The valid values are FALSE or TRUE. In both cases the correspondence table as
an R object. If output should be saved as a csv file, the argument should be set
as TRUE. By default, no csv file is produced.

18 structureData

Value

retrieveCorrespondenceTable() returns a classification tables from CELLAR and FAO. The
table includes the following variables:

• Source Classification name (e.g. cn2019): the code of each object in the source classification

• Source Classification label: the corresponding label of each object

• Target Classification name (e.g. cn2021): the code of each object in the target classification

• Target Classification label: the corresponding label of each object

• Comment: details on each object, if available

• URL: the URL from which the SPARQL query was retrieved

Examples

{
endpoint = "CELLAR"
prefix = "nace2"
ID_table = "NACE2_PRODCOM2021"
language = "fr"
dt = retrieveCorrespondenceTable(prefix, endpoint, ID_table, language)
head(dt)
}

structureData Obtain the structure of the classification tables from CELLAR and
FAO.

Description

Obtain the structure of the classification tables from CELLAR and FAO.

Usage

structureData(prefix, conceptScheme, endpoint, language = "en")

Arguments

prefix The SPARQL instruction for a declaration of a namespace prefix. It can be found
using the classEndpoint() function.

conceptScheme Taxonomy of the SKOS object to be retrieved. It can be found using the classEnd-
point() function.

endpoint The SPARQL Endpoint

language Language of the table. By default is set to "en". This is an optional argument.

updateCorrespondenceTable 19

Value

structureData() returns the structure of a classification table from CELLAR and FAO in form a
table with the following colums:

• Concept_Scheme: taxonomy of the SKOS object to be retrieved

• Level: the levels of the objects in the collection

• Depth: identify the hierarchy of each level

• Count: the number of objects retrieved in each level

Examples

{
endpoint = "CELLAR"
prefix = "nace2"
conceptScheme = "nace2"
language = "en"
structure_dt = structureData(prefix, conceptScheme, endpoint, language)
}

updateCorrespondenceTable

Update the correspondence table between statistical classifications A
and B when A has been updated to version A*

Description

Update the correspondence table between statistical classifications A and B when A has been up-
dated to version A*.

Usage

updateCorrespondenceTable(
A,
B,
AStar,
AB,
AAStar,
CSVout = NULL,
Reference = "none",
MismatchToleranceB = 0.2,
MismatchToleranceAStar = 0.2,
Redundancy_trim = TRUE

)

20 updateCorrespondenceTable

Arguments

A A string of the type character containing the name of a csv file that contains
the original classification A.

B A string of the type character containing the name of a csv file that contains
classification B.

AStar A string of the type character containing the name of a csv file that contains
the updated version A*.

AB A string of the type character containing the name of a csv file that contains
the previous correspondence table A:B.

AAStar A string of the type character containing the name of a csv file that contains the
concordance table A:A*, which contains the mapping between the codes of the
two versions of the classification.

CSVout The preferred name for the output csv files that will contain the updated corre-
spondence table and information about the classifications involved. The valid
values are NULL or strings of type character. If the selected value is NULL, the
default, no output file is produced. If the value is a string, then the output is ex-
ported into two csv files whose names contain the provided name (see "Value"
below).

Reference The reference classification among A and B. If a classification is the reference
to the other, and hence hierarchically superior to it, each code of the other clas-
sification is expected to be mapped to at most one code of the reference classifi-
cation. The valid values are "none", "A", and "B". If the selected value is "A"
or "B", a "Review" flag column is included in the output (see "Explanation of
the flags" below).

MismatchToleranceB

The maximum acceptable proportion of rows in the updated correspondence
table which contain no code of the target classification B, among those which
contain a code of A, of A*, or of both. The default value is 0.2. The valid values
are real numbers in the interval [0, 1].

MismatchToleranceAStar

The maximum acceptable proportion of rows in the updated correspondence
table which contain no code of the updated classification A*, among those which
contain a code of A, of B, or of both. The default value is 0.2. The valid values
are real numbers in the interval [0, 1].

Redundancy_trim

An argument used to facilitate the trimming of the redundant records. The valid
logical values are TRUE or FALSE. The default value is TRUE, which removes
all redundant records, replacing the values of Acode Alabel and Asupp with
the value ‘Multiple’ (to indicate that multiple A records are involved). If the
multiple A records are the same, their value will not be replaced. The other
values is FALSE, which shows redundant records together with the redundancy
flag.

Details

File and file name requirements:

updateCorrespondenceTable 21

• The files that correspond to arguments A, B, AStar, AB, AAStar must be in csv format with
comma as delimiter. If full paths are not provided, then these files must be available in the
working directory. No two filenames provided must be identical.

• If any of the two files where the output will be stored is read protected (for instance because it
is open elsewhere) an error message will be reported and execution will be halted.

Classification table requirements:

• The files that correspond to arguments A, B and AStar must contain at least one column and
at least two rows. The first column contains the codes of the respective classification. The
first row contains column headers. The name of the first column is the name of the respective
classification (e.g., "CN 2021").

• The classification codes contained in a classification file (expected in its first column as men-
tioned above) must be unique. No two identical codes are allowed in the column.

• If any of the files that correspond to arguments A, B and AStar has additional columns the first
one of them is considered as containing the labels of the respective classification codes.

Correspondence and concordance table requirements:

• The files that correspond to arguments AB and AAStar must contain at least two columns and
at least two rows. The first column of the file that corresponds to AB contains the codes of
classification A. The second column contains the codes of classification B. Similar require-
ments apply to the file that corresponds to AAStar. The first row of each of these files contains
column headers. The names of the first two columns are the names of the respective classifi-
cations.

• The pairs of classification codes contained in the concordance and the correspondence table
files (expected in their first two columns as mentioned above) must be unique. No two identical
pairs of codes are allowed in the first two columns.

Interdependency requirements:

• At least one code of classification A must appear in both the file of concordance table A:A*
and the file of correspondence table A:B.

• At least one code of classification A* must appear in both the file of classification A* and the
file of concordance table A:A*.

• At least one code of classification B must appear in both the file of classification B and the file
of correspondence table A:B.

Mismatch tolerance:

• The ratio that is compared with MismatchToleranceB has as numerator the number of rows of
the updated correspondence table which contain a code for A, for A*, or for both, but no code
for B and as denominator the number of rows which contain a code for A, for A*, or for both
(regardless of whether there is a code for B or not). If the ratio exceeds MismatchToleranceB
the execution of the function is halted.

• The ratio that is compared with MismatchToleranceAStar has as numerator the number of
rows of the updated correspondence table which contain a code for A, for B, or for both,
but no code for A* and as denominator the number of rows which contain a code for A, for
B*, or for both (regardless of whether there is a code for A* or not). If the ratio exceeds
MismatchToleranceAStar the execution of the function is halted.

22 updateCorrespondenceTable

Value

updateCorrespondenceTable() returns a list with two elements, both of which are data frames.

• The first element is the updated correspondence table A*:B augmented with flags "CodeChange",
"Review" (if applicable), "Redundancy", "NoMatchToAStar", "NoMatchToB", "NoMatch-
FromAStar", "NoMatchFromB", "LabelChange", and with all the additional columns of the
A, B, AStar, AB and AAStar files.

• The second element contains the names of the original classification A, the target classification
B, and the updated version A*, as read from the top left-hand side cell of the respective input
files.

• If the value of argument CSVout is a string of type character, the elements of the list are
exported into files of csv format. The name of the file for the first element is the value of argu-
ment CSVout and the name of the file for the second element is classificationNames_CSVout.
For example, if CSVout = "updateCorrespondenceTable.csv", the elements of the list are ex-
ported into "updateCorrespondenceTable.csv" and "classificationNames_updateCorrespondenceTable.csv",
respectively.

Explanation of the flags

• For each row of the updated correspondence table, the value of "CodeChange" is equal to 1
if the code of A (or A*) contained in this row maps -in this or any other row of the table-
to a different code of A* (or A), otherwise the "CodeChange" is equal to 0. The value of
"CodeChange" is empty if either the code of A, or the code of A*, or both are missing.

• The "Review" flag is produced only if argument Reference has been set equal to "A" or "B".
For each row of the updated correspondence table, if Reference = "A" the value of "Review"
is equal to 1 if the code of B maps to more than one code of A*, and 0 otherwise. If Reference
= "B" the value of "Review" is equal to 1 if the code of A* maps to more than one code of B,
and 0 otherwise. The value of the flag is empty if either the code of A*, or the code of B, or
both are missing.

• For each row of the updated correspondence table, the value of "Redundancy" is equal to 1 if
the row contains a combination of codes of A* and B that also appears in at least one other
row of the updated correspondence table. The value of the flag is empty if both the code of
A* and the code of B are missing.

• When "Redundancy_Trim" is equal to FALSE the "Redundancy_keep" flag is created to iden-
tify with value 1 the records that will be kept if trimming is performed.

• For each row of the updated correspondence table, the value of "NoMatchToAStar" is equal
to 1 if there is a code for A, for B, or for both, but no code for A*. The value of the flag is 0 if
there are codes for both A and A* (regardless of whether there is a code for B or not). Finally,
the value of "NoMatchToAStar" is empty if neither A nor B have a code in this row.

• For each row of the updated correspondence table, the value of "NoMatchToB" is equal to 1 if
there is a code for A, for A*, or for both, but no code for B. The value of the flag is 0 if there
are codes for both A and B (regardless of whether there is a code for A* or not). Finally, the
value of "NoMatchToB" is empty if neither A nor A* have a code in this row.

• For each row of the updated correspondence table, the value of "NoMatchFromAStar" is equal
to 1 if the row contains a code of A* that appears in the table of classification A* but not in
the concordance table A:A*. The value of the flag is 0 if the row contains a code of A* that

updateCorrespondenceTable 23

appears in both the table of classification A* and the concordance table A:A*. Finally, the
value of the flag is empty if the row contains no code of A* or if it contains a code of A* that
appears in the concordance table A:A* but not in the table of classification A*.

• For each row of the updated correspondence table, the value of "NoMatchFromB" is equal
to 1 if the row contains a code of B that appears in the table of classification B but not in
the correspondence table A:B. The value of the flag is 0 if the row contains a code of B that
appears in both the table of classification B and the correspondence table A:B. Finally, the
value of the flag is empty if the row contains no code of B or if it contains a code of B that
appears in the correspondence table A:B but not in the table of classification B.

• For each row of the updated correspondence table, the value of "LabelChange" is equal to 1
if the labels of the codes of A and A* are different, and 0 if they are the same. Finally, the
value of "LabelChange" is empty if either of the labels, or both labels, are missing. Lower and
upper case are considered the same, and punctuation characters are ignored when comparing
code labels.

• The argument "Redundancy_trim" is used to delete all the redundancies which are mapping
correctly. If the analysis concludes that the A*code / Bcode mapping is correct for all cases
involving redundancies, then an action is needed to remove the redundancies. If the selected
value is TRUE, all redundant records are removed and kept only one record for each unique
combination. For this record retained, the Acodes, the Alabel and the Asupp information
is replaced with ‘multiple’. If the multiple A records are the same, their value will not be
replaced. If the selected value is FALSE, no trimming is executed so redundant records are
shown, together with the redundancy flag.

Sample datasets included in the package

Running browseVignettes("correspondenceTables") in the console opens an html page in the
user’s default browser. Selecting HTML from the menu, users can read information about the use
of the sample datasets that are included in the package. If they wish to access the csv files with the
sample data, users have two options:

• Option 1: Unpack into any folder of their choice the tar.gz file into which the package has
arrived. All sample datasets may be found in the "inst/extdata" subfolder of this folder.

• Option 2: Go to the "extdata" subfolder of the folder in which the package has been installed
in their PC’s R library. All sample datasets may be found there.

Examples

{
Application of function updateCorrespondenceTable() with NAICS 2017 being the
original classification A, NACE being the target classification B, NAICS 2022
being the updated version A*, NAICS 2017:NACE being the previous correspondence
table A:B, and NAICS 2017:NAICS 2022 being the A:A* concordance table. The desired
name for the csv file that will contain the updated correspondence table is
"updateCorrespondenceTable.csv", there is no reference classification, and the
maximum acceptable proportions of unmatched codes between the original
classification A and the target classification B, and between the original
classification A and the updated classification A* are 0.5 and 0.3, respectively.

tmp_dir<-tempdir()

24 updateCorrespondenceTable

A <- system.file("extdata", "NAICS2017.csv", package = "correspondenceTables")
AStar <- system.file("extdata", "NAICS2022.csv", package = "correspondenceTables")
B <- system.file("extdata", "NACE.csv", package = "correspondenceTables")
AB <- system.file("extdata", "NAICS2017_NACE.csv", package = "correspondenceTables")
AAStar <- system.file("extdata", "NAICS2017_NAICS2022.csv", package = "correspondenceTables")

UPC <- updateCorrespondenceTable(A,
B,
AStar,
AB,
AAStar,
file.path(tmp_dir,"updateCorrespondenceTable.csv"),
"none",
0.5,
0.3,
FALSE)

summary(UPC)
head(UPC$updateCorrespondenceTable)
UPC$classificationNames
csv_files<-list.files(tmp_dir, pattern = ".csv")
if (length(csv_files)>0) unlink(csv_files)

}

Index

classEndpoint, 2
classificationEndpoint, 3
classificationQC, 4
correctionClassification, 7
correspondenceList, 8

dataStructure, 8

lengthsFile, 10

newCorrespondenceTable, 11

prefixList, 15

retrieveClassificationTable, 16
retrieveCorrespondenceTable, 17

structureData, 18

updateCorrespondenceTable, 19

25

	classEndpoint
	classificationEndpoint
	classificationQC
	correctionClassification
	correspondenceList
	dataStructure
	lengthsFile
	newCorrespondenceTable
	prefixList
	retrieveClassificationTable
	retrieveCorrespondenceTable
	structureData
	updateCorrespondenceTable
	Index

